BDgene: A Genetic Database for Bipolar Disorder and Its Overlap With Schizophrenia and Major Depressive Disorder

Su-Hua Chang, Lei Gao, Zhao Li, Wei-Na Zhang, Yang Du, and Jing Wang

Background: Bipolar disorder (BD) is a common psychiatric disorder with complex genetic architecture. It shares overlapping genetic influences with schizophrenia (SZ) and major depressive disorder (MDD). Large numbers of genetic studies of BD and cross-disorder studies between BD and SZ/MDD have accumulated numerous genetic data. There is a growing need to integrate the data to provide a comprehensive data set to facilitate the genetic study of BD and its highly relevant diseases.

Methods: BDgene database was developed to integrate BD-related genetic factors and shared ones with SZ/MDD from profound literature reading. On the basis of data from the literature, in-depth analyses were performed for further understanding of the data, including gene prioritization, pathway-based analysis, intersection analysis of multidisease candidate genes, and pathway enrichment analysis.

Results: BDgene includes multiple types of literature-reported genetic factors of BD with both positive and negative results, including 797 genes, 3119 single nucleotide polymorphisms, and 789 regions. Shared genetic factors such as single nucleotide polymorphisms, genes, and regions from published cross-disorder studies among BD and SZ/MDD were also presented. In-depth data analyses identified 43 BD core genes; 70 BD candidate pathways; and 127, 79, and 107 new potential cross-disorder genes for BD-SZ, BD-MDD, and BD-SZ-MDD, respectively.

Conclusions: As a central genetic database for BD and the first cross-disorder database for BD and SZ/MDD, BDgene provides not only a comprehensive review of current genetic research but also high-confidence candidate genes and pathways for understanding of BD mechanism and shared etiology among its relevant diseases. BDgene is freely available at http://bdgene.psych.ac.cn.

Key Words: BDgene, Bipolar disorder, data analysis, genetic database, genetic overlap, major depressive disorder, schizophrenia

Bipolar disorder (BD) is a common and severe psychiatric disorder characterized by the cycles between bouts of mania and depression (1). The lifetime prevalence of BD is estimated to be between 1% and 2% (2,3). With the extensive impairment and high risk of suicide (1,4), BD causes a significant impact on patients’ quality of life, as well as a considerable economic burden on families and society (5). The etiologic mechanisms for BD are not well understood, but empirical data consistently suggest the polygenic character of BD with estimated heritability ranging from 80% to 85% (6). Meanwhile, several BD clinical features, including psychosis and suicidality, can also be observed in schizophrenia (SZ) and major depressive disorder (MDD) (7). Increasing evidence has indicated that familial coaggregation or comorbidity between these disorders is mainly attributable to overlapping genetic influences (7–10). These findings have raised questions on how these disorders are etiologically connected. To unveil the disease mechanism of BD and its mutual pathogenesis with SZ/MDD, it is of vital importance to study the genetic basis of BD and its overlap with SZ and MDD.

During the past decade, large numbers of association and linkage studies and meta-analyses aiming to explore genetic susceptibility of BD have been conducted, and numerous susceptibility variants, genes, and chromosomal regions have been reported to be associated with BD (11,12). However, these results are scattered in numerous publications and are often inconsistent. For example, several studies supported the association of gene RGS4 (regulator of G-protein signaling 4) with BD using case–control or family-based association study design (13–15). However, some studies with similar design did not detect the association between tagging single nucleotide polymorphisms (SNPs) in RGS4 and BD (16,17). These scattered and inconsistent results have made it difficult for researchers to acquire a global understanding of all positive and negative findings. Therefore, there is a growing need to integrate genetic data of BD from various genetic studies to present a systematic review of current genetic research on BD. In the meantime, more and more cross-disorder studies have tried to investigate the genetic overlapping among BD, SZ, and MDD (7,18), which also calls for a systematic integration of corresponding results to lay a solid foundation for discovery of shared mechanism of BD and its highly relevant diseases. In addition, based on integration of data from literature, in-depth analysis of published data will help to provide reliable guide for experimental verification, establish a connection among different types of data, and stimulate novel academic perspectives. For example, the large numbers of genetic data have brought challenge for selecting high-confidence candidate genes for experimental verification. Gene prioritization analysis is proposed to tackle the challenge by ranking genes according to disease relevance (19). In addition, as a complex disease, BD may
result from multiple genes that disrupt one or more pathways (20). The traditional association approach examines individual SNPs/genes and ignores their combined effects (21). Pathway-based analysis (PBA) is an effective method to explore the combined effects of multiple genes by detecting disease-related pathways from genome-wide association study (GWAS) data (22).

We developed BDgene, a genetic database aiming to integrate multitype genetic factors of BD from published genetic studies. The genetic factors not only include variants (e.g., SNP, haplotype, copy number variation [CNV], and other variants), genes, and regions but also gene–gene interactions and pathways. In addition, BDgene emphasizes the overlapping genetic factors between BD and SZ/MDD from cross-disorder studies for shared disease etiology research. In-depth data analyses were performed, and the results were presented in BDgene, including gene prioritization analysis, pathway-based analysis for GWAS data, intersection analysis of multidisease candidate genes, functional annotation and pathway enrichment analysis for BD core genes and BD shared genes with SZ/MDD. BDgene is targetted to help unveil the genetic basis of BD and its shared mechanism with SZ/MDD.

Methods and Materials

Literature Search and Data Extraction

To obtain the literature-origin BD-related genetic factors, a comprehensive search of BD-related genetic publications in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) was made by using the following search terms: “(bipolar” [Title/Abstract] OR “manic depression” [Title/Abstract] OR “manic depression” [Title/Abstract]) AND (polymorphism [Title/Abstract] OR SNP [Title/Abstract] OR haplotype [Title/Abstract] OR interaction [Title/Abstract] OR variant [Title/Abstract] OR variation [Title/Abstract] OR mutation [Title/Abstract] OR CNV [Title/Abstract] OR “copy number variation” [Title/Abstract] OR repeats [Title/Abstract] OR deletion [Title/Abstract] OR duplication [Title/Abstract] OR (gene [Title/Abstract] OR locus [Title/Abstract] OR chromosome [Title/Abstract] OR genetic [Title/Abstract] OR genome [Title/Abstract] OR genomic [Title/Abstract]) AND (linkage [Title/Abstract] OR associat* [Title/Abstract])). It resulted in 4836 English publications as of March 1, 2013. Abstracts of these publications were manually screened on the basis of inclusion criteria (i.e., genetic studies [association, linkage, and genetic interaction studies] using study designs of family-based, case–control, pedigree, twin, or affected sib pairs, and with the target of identifying genetic susceptibility factors of BD in diagnosed patients) were included. The following studies were excluded: 1) publications about pharmacology, sociology, electrophysiology, neurophysiology, and behavioral research, which are not genetic studies or do not focus on genetic susceptibility of BD; 2) animal model research; 3) review articles without data analysis and new statistical results; and 4) genetic studies only focus on internal clinical variables, such as different age of onset, suicidal behavior, and medicine response, but do not study BD as one phenotype to identify the disease susceptibility. After filtering, 789 articles were retained. Furthermore, to analyze disease-related pathways, there were seven studies about PBA for BD GWAS data collected (20,23–28). In all, 796 studies were included in BDgene.

The full text of each eligible publication was read carefully, and detailed information of each genetic factor in the study was extracted manually, including allele change, statistical values (p value, odds ratio, etc.), and author comments. For better interpretation of the results, study design, sample population, sample size, analytical method, as well as result summary from each study were presented. For PBA studies, all pathways reported in PBA articles were collected, and the analyzed data set, specific PBA approach, and detailed parameters were also provided. Meanwhile, to illustrate the association between genetic candidates and disease, all statistical results from the original publications were categorized into “Positive,” “Negative,” or “Trend” according to the criteria described in our previous studies (29): 1) for candidate–gene association studies, the result with p < .05 was defined as “Positive.” 2) For GWAS, p < 1 × 10^{-8} suggested a Positive result, p > 1 × 10^{-5} suggested a Negative result, and a value falling between these thresholds represented a Trend result. 3) Mutual result was classified as Trend if no statistical significance was presented. 4) For linkage studies, significance levels of LOD (logarithm [base 10] of odds) > 3.3, 1.9 < LOD < 3.3 and LOD < 1.9 were used for Positive, Trend, and Negative results respectively as proposed by Lander and Kruglyak (30). If other statistical values were used, the criteria were referred to the statistical method in original papers.

In addition, the genetic studies that investigated the association of genetic factors with more than one disease in one study under identical or similar methodologic conditions were regarded as “cross-disorder studies.” We focused on genetic cross-disorder studies on the two (BD-SZ, BD-MDD) or three (BD-SZ-MDD) diseases. Among 796 studies collected in BDgene, 279 articles were cross-disorder studies. For these, detailed statistical results and author comments for each genetic factor in BD and SZ and/ or MDD were extracted apart from the original sample information. Statistical result of each genetic factor in each disease was also categorized into Positive, Negative, or Trend by using the same criteria as described above.

Data Analysis

On the basis of the data from the literature, in-depth data analyses were implemented as described in this section (Figure 1).

Gene Prioritization. With the purpose of helping researchers select the most promising genes from large list of candidate genes for further verification study, gene prioritization analysis was implemented to prioritize 797 BD candidate genes hosted in BDgene by adopting five multiple-source-based gene prioritization tools, i.e., Endeavour (31,32), DIR (33), ToppGene (34), ToppNet (34), and TargetMine (35). Detailed descriptions on selection of multiple-source-based gene prioritization tools were included in BDgene.
criteria of tools for analysis and the analytical procedures were described in our previous publication on attention-deficit/hyperactivity disorder (36). Briefly, most gene prioritization tools are designed based on the principle that the most promising candidates will be those that are similar to known genes that already have solid evidence of involvement in disease susceptibility (19). These known genes were called “training genes.” In our analysis, 20 genes were included in the training gene set (Table S1 in Supplement 1), among which 18 were extracted from an extensively cited article about BD liability genes (11) with a threshold of at least three positive results in BDgene, and the other two important genes, ANK3 and CACNA1C, were reported and replicated by several GWASs and meta-analyses (37–39). All candidate genes hosted in BDgene were analyzed by the five tools, and each tool generated a prioritized gene list. To reduce false positives, only those genes predicted by at least three of the five tools were regarded as the most promising candidate genes (called “prioritized genes”). Both training genes and prioritized genes were defined as BD “core genes.”

Pathway-Based Analysis for GWAS. In addition to the pathways collected from the seven published BD PBA papers, which analyzed five GWAS data sets in total, to capture more candidate pathways related with BD, we performed pathway-based analysis for 12 available independent BD GWAS data sets by using an improved gene set enrichment analysis (i-GSEA) method developed by our group (28). The 12 BD GWAS data sets included two data sets from authors (40,41), two from the Database of Genotypes and Phenotypes (dbGaP) (42), one from the Wellcome Trust Case Control Consortium (43), and seven from the Psychiatric GWAS Consortium of National Institute of Mental Health (https://www.nimhgenetics.org). For raw genotype data from Wellcome Trust Case Control Consortium and National Institute of Mental Health, Cochran-Armitage trend test was used to create a p value list of SNPs by using PLINK (44). Annotated Gene Ontology (GO) terms downloaded from Molecular Signatures Database (MSigDB) v3.0 (45) and pathways from Kyoto Encyclopedia of Genes and Genomes (KEGG) (46) and BioCarta (http://www.biocarta.com) were used as reference gene sets. To map SNPs to genes, “5 kb upstream and downstream of gene” was used (47). Other parameters were referred to the default parameters in i-GSEA online tool i-GSEA4GWAS (28). Statistically significant pathways/gene sets with false discovery rate <.05 were included in BDgene.

Intersection Analysis of Multidisease Candidate Genes. Besides the shared genes from published cross-disorder studies between BD and SZ/MDD, the identical genes reported to be associated with BD and SZ/MDD in separate studies might also provide clues to a disease shared mechanism. SZGene is a collection of SZ-related genes and polymorphisms from published genetic association studies (48), and MK4MDD is a multilevel knowledge base for MDD that provides a list of MDD-related genes from published genetic studies (49). To provide new candidate genes for cross-disorder research in the future, gene lists from SZGene, MK4MDD, and BDgene were compared in which the intersection of genes from BDgene-SZGene and BDgene-MK4MDD were recognized as potential shared genes for BD-SZ and BD-MDD, respectively. Among all overlapping BD-SZ shared genes and BD-MDD shared genes (including from both cross-disorder studies on the two diseases and intersection analysis), the remaining genes after excluding those with evidence from cross-disorder studies on the three diseases (BD-SZ-MDD) were considered potential BD-SZ-MDD shared genes from intersection analysis. Gene descriptions and resulting categories from SZGene and MK4MDD were also provided.

Functional Annotation and Pathway Enrichment Analysis. To facilitate users’ understanding of the function of all reported candidate SNPs and genes, functional annotation for them was made. SNP functions were annotated as “synonymous,” “non-synonymous,” “frame shift,” and so on by using the data from Ensembl (47). In addition, we conducted linkage disequilibrium (LD) analysis for the literature reported SNPs in BDgene to capture more functional candidates, especially candidate causal SNPs. The LD data were downloaded from HapMap FTP (file transfer protocol), which were compiled from merged genotype data from phases I+II+III (HapMap rel #27, National Center for Biotechnology Information B36) for markers up to 200 kb apart (50). The population used in the LD analysis was consistent with original studies. SNPs in high LD with the literature-origin SNP (r² > .8) were selected as LD proxies (51). Functional annotation on genes included gene-related GO (52) terms, gene-related pathways from KEGG (46) and BioCarta (http://www.biocarta.com), and protein–protein interactions from Human Protein Reference Database (53). Furthermore, to interpret the function of BD core genes and literature-reported shared genes with at least one positive result, pathway enrichment analysis was implemented by inputing the gene lists into DAVID 6.7 to highlight the most relevant pathways associated with the gene lists (54,55).

Results
On the basis of a comprehensive literature review and in-depth data analysis, BDgene not only contains a genetic data set for BD and the shared ones with SZ and MDD that were published so far but also provides a series of in-depth analytical results. All data from BDgene were stored and managed in a MySQL relational database, and a user-friendly web interface was developed to help users search and use the data.

BD Genetic Factors
Through depth-mining of 796 papers, BDgene contains 797 candidate genes for BD, of which 447 genes have at least one positive finding according to our categorization of statistical results. There are 45 genes examined by at least five studies in BDgene, in which SLC6A4, BDNF, and DRD2 are the top three studied genes reported by 41, 35, and 26 publications, respectively. In addition to genes, BDgene also provides multitype genetic factors including 3119 SNPs (882 of them showed significant associations with BD in at least one study), 1473 haplotypes, 401 CNVs, 674 other variants (e.g., variable number of tandem repeats, microsatellite, duplication, insertion/deletion), 38 pairs of gene–gene interactions, and 789 chromosomal regions (92 positive regions from linkage studies). Moreover, to explore the combined effect of genes, BDgene contains 245 pathways identified by pathway-based analysis for BD GWAS data, among which 188 pathways were obtained from published BD PBA papers, and 70 pathways were acquired from our PBA by implementing i-GSEA for 12 BD GWAS data sets. Remarkably, 13 of these pathways were identified by both published PBA papers and our own PBA analysis, including “calcium channel activity” (GO:0005262) and “central nervous system development” (GO:0007417). Full statistics for BD-related multitype genetic factors are shown in Table 1.

BD Shared Genetic Factors With SZ and MDD
BDgene contains 285 shared genes for BD-SZ, 120 for BD-MDD, and 49 for BD-SZ-MDD from published cross-disorder studies, in which 83, 47, and 10 genes have at least one positive
finding for each of the two (BD-SZ, BD-MDD) or three (BD-SZ-MDD) diseases. These genes were regarded as reliable cross-disorder genes, in which, DAOA, DISC1, NRG1, and MTHFR have at least three positive findings from cross-disorder studies for both BD and SZ; SLC6A4, COMT, and MTHFR have at least three positive findings from cross-disorder studies for both BD and MDD. Moreover, by intersection analysis of multidisease genes, BDgene also provides 127 new potential shared genes for BD-SZ, 79 for BD-MDD, and 107 for BD-SZ-MDD. Taken together, BDgene covers 412 shared genetic factors shared by BD and SZ/MDD, including SNPs, haplotypes, other variants, gene–gene interactions, and chromosomal regions, are also included in BDgene. A summary of shared genetic factors between BD and SZ/MDD is shown in Table 2.

Prioritized Genes and Enriched Pathways

To rank genes by relevance to BD, we performed gene prioritization for BD candidate genes. By using 20 known BD genes as training genes, 23 prioritized genes were obtained (Table S2 in Supplement 1), in which eight genes were predicted by four tools and 15 genes were predicted by three tools. Taken together the 20 training genes and 23 prioritized genes, 43 genes were regarded as “core genes.” To explore functional pathways of the core genes, pathway enrichment analysis was performed. Among the core-gene-enriched pathways, “amine binding,” “synapse transmission,” and “transmission of nerve impulse” were the top three statistically significant. There were 26 core-gene-enriched pathways, which have also been predicted to be associated with BD by PBA for GWAS; the top 10 of these overlapped pathways are shown in Table S3 in Supplement 1. The majority of the 10 pathways were involved in synaptic transmission, membrane, and ion channel activity. Furthermore, to provide clues for understanding disease shared etiology, we did pathway enrichment analysis for the 83 literature-reported positive genes shared by BD-SZ and 47 shared by BD-MDD; the top 10 enriched pathways for each group of shared genes are shown in Tables S4 and S5 in Supplement 1. It is worth noting that “circadian rhythm” and “rhythmic process” were two of shared pathways among the top 10 enriched pathways for both BD-SZ and BD-MDD shared genes, and several circadian rhythm–related genes such as NPAS2, PER2, PER3, CRY1, and CLOCK were enriched in these pathways. Specifically, circadian rhythm and rhythmic process were the top two enriched pathways for BD-MDD shared genes.

Database Usage

A powerful search engine and a detailed report for each genetic factor were provided in BDgene for researchers to search and analyze the data (Figure 2A). To facilitate researchers in browsing different types of genetic factors (SNP/gene/CNV/region) graphically and simultaneously in the context of genomic regions, gBrowse was incorporated into BDgene (Figure 2B) (56). In addition, a “My Gene Set” tool was developed to facilitate researchers in collecting genes of interest and investigating gene–gene interactions. A graphical gene network will be dynamically generated on the basis of the selected genes and their interacted genes, which might provide new candidates and clues for understanding their association with disease (Figure 2C). For example, BDNF and DRD2 are two of the most studied genes in BD. When adding them into My Gene Set, the network showed that gene CADPS2 (Ca++-dependent secretion activator 2) was interacted with both BDNF and DRD2. Although CADPS2 has not been reported to be associated with BD, it has been shown to have high relevance to brain structure (57) and might be a potential candidate for further study. To facilitate researchers’ sharing and exchange of ideas, a “Forum” module was developed. Researchers can not only make comments on specific genes or studies hosted by BDgene online in real time but also exchange ideas to review BD genetic research or upload complementary articles (Figure 2D). In summary, with the help of these tools for searching, browsing, and discussion, users can acquire an in-depth understanding of the data and the logical connections among various genetic factors with strong supporting evidence.

Discussion

As a comprehensive genetic database and the first cross-disorder database for BD, BDgene integrates mutitype BD-related genetic factors in BD (Table S2 in Supplement 1), in which eight genes were predicted as training genes, 23 prioritized genes were obtained by four tools and 15 genes were predicted by three tools. Taken together the 20 training genes and 23 prioritized genes, 43 genes were regarded as “core genes.” To explore functional pathways of the core genes, pathway enrichment analysis was performed. Among the core-gene-enriched pathways, “amine binding,” “synapse transmission,” and “transmission of nerve impulse” were the top three statistically significant. There were 26 core-gene-enriched pathways, which have also been predicted to be associated with BD by PBA for GWAS; the top 10 of these overlapped pathways are shown in Table S3 in Supplement 1. The majority of the 10 pathways were involved in synaptic transmission, membrane, and ion channel activity. Furthermore, to provide clues for understanding disease shared etiology, we did pathway enrichment analysis for the 83 literature-reported positive genes shared by BD-SZ and 47 shared by BD-MDD; the top 10 enriched pathways for each group of shared genes are shown in Tables S4 and S5 in Supplement 1. It is worth noting that “circadian rhythm” and “rhythmic process” were two of shared pathways among the top 10 enriched pathways for both BD-SZ and BD-MDD shared genes, and several circadian rhythm–related genes such as NPAS2, PER2, PER3, CRY1, and CLOCK were enriched in these pathways. Specifically, circadian rhythm and rhythmic process were the top two enriched pathways for BD-MDD shared genes.

Database Usage

A powerful search engine and a detailed report for each genetic factor were provided in BDgene for researchers to search and analyze the data (Figure 2A). To facilitate researchers in browsing different types of genetic factors (SNP/gene/CNV/region) graphically and simultaneously in the context of genomic regions, gBrowse was incorporated into BDgene (Figure 2B) (56). In addition, a “My Gene Set” tool was developed to facilitate researchers in collecting genes of interest and investigating gene–gene interactions. A graphical gene network will be dynamically generated on the basis of the selected genes and their interacted genes, which might provide new candidates and clues for understanding their association with disease (Figure 2C). For example, BDNF and DRD2 are two of the most studied genes in BD. When adding them into My Gene Set, the network showed that gene CADPS2 (Ca++-dependent secretion activator 2) was interacted with both BDNF and DRD2. Although CADPS2 has not been reported to be associated with BD, it has been shown to have high relevance to brain structure (57) and might be a potential candidate for further study. To facilitate researchers’ sharing and exchange of ideas, a “Forum” module was developed. Researchers can not only make comments on specific genes or studies hosted by BDgene online in real time but also exchange ideas to review BD genetic research or upload complementary articles (Figure 2D). In summary, with the help of these tools for searching, browsing, and discussion, users can acquire an in-depth understanding of the data and the logical connections among various genetic factors with strong supporting evidence.

Discussion

As a comprehensive genetic database and the first cross-disorder database for BD, BDgene integrates mutitype BD-related genetic factors in BD (Table S2 in Supplement 1), in which eight genes were predicted as training genes, 23 prioritized genes were obtained by four tools and 15 genes were predicted by three tools. Taken together the 20 training genes and 23 prioritized genes, 43 genes were regarded as “core genes.” To explore functional pathways of the core genes, pathway enrichment analysis was performed. Among the core-gene-enriched pathways, “amine binding,” “synapse transmission,” and “transmission of nerve impulse” were the top three statistically significant. There were 26 core-gene-enriched pathways, which have also been predicted to be associated with BD by PBA for GWAS; the top 10 of these overlapped pathways are shown in Table S3 in Supplement 1. The majority of the 10 pathways were involved in synaptic transmission, membrane, and ion channel activity. Furthermore, to provide clues for understanding disease shared etiology, we did pathway enrichment analysis for the 83 literature-reported positive genes shared by BD-SZ and 47 shared by BD-MDD; the top 10 enriched pathways for each group of shared genes are shown in Tables S4 and S5 in Supplement 1. It is worth noting that “circadian rhythm” and “rhythmic process” were two of shared pathways among the top 10 enriched pathways for both BD-SZ and BD-MDD shared genes, and several circadian rhythm–related genes such as NPAS2, PER2, PER3, CRY1, and CLOCK were enriched in these pathways. Specifically, circadian rhythm and rhythmic process were the top two enriched pathways for BD-MDD shared genes.

<table>
<thead>
<tr>
<th>Table 1. Data Content and Statistics of Bipolar Disorder Genetic Factors in BDgene (Through March 1, 2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
</tr>
<tr>
<td>Variant</td>
</tr>
<tr>
<td>SNP</td>
</tr>
<tr>
<td>Haplotype</td>
</tr>
<tr>
<td>CNV</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Gene</td>
</tr>
<tr>
<td>Gene–Gene Interaction</td>
</tr>
<tr>
<td>Region</td>
</tr>
<tr>
<td>Pathway</td>
</tr>
<tr>
<td>From PBA Papers</td>
</tr>
<tr>
<td>From i-GSEA4GWAS Analysis</td>
</tr>
</tbody>
</table>

- CNV, copy number variation; i-GSEA4GWAS, improved gene set enrichment analysis method online tool; NA, not applicable; PBA, pathway-based analysis; SNP, single nucleotide polymorphism.
- Number in parenthesis indicates the number of genetic factors with at least one positive result.
- Other variants include variable number of tandem repeats, microsatellite, duplication, insertion/deletion, SNP without rs ID, etc.
- Some pathways were predicted by both PBA article and i-GSEA4GWAS analysis.
- The data were from in-depth data analysis; others were from literature.

<table>
<thead>
<tr>
<th>Table 2. Statistics Regarding Shared Genetic Factors of BD-SZ, BD-MDD, and BD-SZ-MDD (Through March 1, 2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
</tr>
<tr>
<td>BD-SZ</td>
</tr>
<tr>
<td>Variant</td>
</tr>
<tr>
<td>SNP</td>
</tr>
<tr>
<td>Haplotype</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Gene</td>
</tr>
<tr>
<td>From cross-disorder studies</td>
</tr>
<tr>
<td>From candidate gene intersection analysis</td>
</tr>
<tr>
<td>Gene–Gene Interaction</td>
</tr>
<tr>
<td>Region</td>
</tr>
</tbody>
</table>

- BD, bipolar disorder; MDD, major depressive disorder; SNP, single nucleotide polymorphism; SZ, schizophrenia.
- Other variants include variable number of tandem repeats, microsatellite, duplication, insertion/deletion, SNP without rs ID, etc.
- New potential shared genes from in-depth data analysis; others were from literature.
Figure 2. An overview of the connections of different tools and function modules for data access and analysis in BDgene. BD, bipolar disorder; MDD, major depressive disorder; SZ, schizophrenia.

gene factors and factors shared with SZ and MDD through in-depth reading of 796 publications. The integration of data from the literature will provide a panoramic view of current genetic studies for BD and other highly relevant disorders. Meanwhile, the data integration makes it possible to display correlations among various genetic factors and thus to facilitate researchers to find genetic factors with multilevel evidence or multidisease evidence, which is a fundamental step in exploring valuable information for further study. By providing powerful search and browse tools, the BDgene database aims to act not only as an integrated genetic resource for BD but also as a flexible application platform for the genetic study of BD and its overlap with SZ and MDD.

On the basis of data from the literature, in-depth data mining and data analyses were conducted. Some promising results have received little attention with little additional research thus far. For example, among the 43 core genes identified to have high relevance to BD, gene AGTR1 (angiotensin II receptor, type 1) was predicted by four tools in our gene prioritization analysis, and its variation has recently been reported to be associated with depression and frontotemporal morphology (58). However, only one candidate gene association study has noted its nominal association with BD until now (59). In addition, PBA implemented by our tool found 70 pathways, of which 57 have not been reported in published PBA articles. Among these new candidate pathways, “notch signaling pathways” has recently been reported by a network analysis combining BD GWAS data and gene expression data (60); several immune-related pathways, such as “immune effector process” and “inflammatory response,” support the clinical findings that immune dysregulation and alternative inflammatory gene expression have been observed in patients with BD (61–63). Moreover, CACNA1C was involved in four of the top 10 pathways identified by both core-gene enrichment analysis and GWAS PBA (Table S3 in Supplement 1). This gene has been identified as associated with BD in several GWAS (37–39), and evidence from brain imaging has also demonstrated changes in total gray matter volume in carriers of risk allele (64). The pathways, in which CACNA1C was highly involved, might present possible explanations for this gene on its role in disease pathogenesis. In summary, the in-depth data analysis results in BDgene will provide more reliable candidates, and those that have not been intensively investigated might be worthy of further exploration.

It is worth mentioning that, in contrast to experimental research providing verification for scientific hypotheses, BDgene is data-driven research with the aim of providing more reliable candidates, as well as clues as to their possible function in explaining hypotheses of mechanism in a systematic way. Because of limited understanding of the complex mechanisms of mental disorders, the results from data-driven approaches only point to possible insights and provide hypotheses. Additional experimental replication and verification are required in future genetic, gene expression and molecular functional studies. In addition, all genetic factors included in BDgene have been collected based on studies aiming to reveal associations between candidate genetic factors and BD in diagnosed patients; therefore, the review articles without statistical results and studies focusing on endophenotypes or clinical characteristics for patients are not included in BDgene.

In conclusion, BDgene aims to fulfill the growing research needs in addressing the genetic complexity of BD and its overlap with SZ and MDD. As more research findings are published, BDgene will be updated quarterly to maintain an update-to-date resource using our established data update pipeline, which includes automatic literature search and downloading, proficient paper filtering and data extraction by research experts, and data annotation and analysis using computer programs. With the development of new research technologies, BDgene will integrate more types of data, such as that from next-generation sequencing, large-scale gene expression, and gene–environment interplay studies. Evidence from epigenetics and animal models will also be included in future efforts to update BDgene and facilitate BD genetic and mechanism research. We hope BDgene will contribute to uncovering the genetic basis of BD and related diseases, and ultimately to the improvement of disease diagnosis and treatment.

This work was supported by the State Administration of Foreign Experts Affairs of Chinese Academy of Sciences (CAS/SAFEA) International Partnership Program for Creative Research Teams (Grant No. Y2CX131003), the Knowledge Innovation Program of the Chinese Academy of Sciences, and the Knowledge Innovation Program of the Chinese Academy of Sciences.
Academy of Sciences (Grant No. KSCX2-EW-J-8), and Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences. We thank Dr. Kun-Lin Zhang for his valuable suggestions on parameter selection of pathway-based analysis for genome-wide association studies.

The authors report no biomedical financial interests or potential conflict of interest.

Supplementary material cited in this article is available online at http://dx.doi.org/10.1016/j.biopsych.2013.04.016.

www.sobp.org/journal

